\qquad
\qquad
\qquad

Honors Chemistry Practice Test 14, 15, 18.3

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Acetic acid is found in
a. lemons.
c. sour milk.
b. vinegar.
d. apples.
\qquad 2. Aqueous solutions of acids
a. contain only two different elements.
c. have very high boiling points.
b. carry electricity.
d. cannot be prepared.
\qquad 3. Bases taste
a. soapy.
c. sweet.
b. sour.
d. bitter.
\qquad 4. Bases react with
a. acids to produce salts and water.
c. water to produce acids and salts.
b. salts to produce acids and water.
d. neither acids, salts, nor water.
\qquad 5. An Arrhenius acid contains
a. hydrogen that does not ionize.
b. hydrogen that ionizes to form hydrogen ions.
c. oxygen that ionizes to form hydroxide ions.
d. oxygen that ionizes to form oxygen ions.
\qquad 6. Arrhenius theorized that an acid is a chemical compound that
a. increases the concentration of hydrogen ions when dissolved in water.
b. increases the concentration of hydroxide ions when dissolved in water.
c. decreases the concentration of hydrogen ions when dissolved in water.
d. decreases the concentration of hydroxide ions when dissolved in water.
7. Which statement about Arrhenius bases is false?
a. Some are ionic hydroxides.
b. They dissociate in solution to release hydroxide ions into the solution.
c. They increase the concentration of hydrogen ions in aqueous solution.
d. Some react with water and remove a hydrogen ion, leaving hydroxide ions.
8. Which of the following is a strong acid?
a. HSO_{4}^{-}
b. $\mathrm{H}_{2} \mathrm{SO}_{4}$
c. $\mathrm{CH}_{3} \mathrm{COOH}$
d. $\mathrm{H}_{3} \mathrm{PO}_{4}$
\qquad 9. Which of the following is a weak base?
a. NH_{3}
b. KOH
c. NaOH
d. $\mathrm{Ba}(\mathrm{OH})_{2}$
10. Which of the following is a strong base?
a. KOH
b. H_{2}
c. NH_{3}
d. HCl
11. Which of the following is a triprotic acid?
a. $\mathrm{H}_{2} \mathrm{SO}_{4}$
b. $\mathrm{CH}_{3} \mathrm{COOH}$
c. HCl
d. $\mathrm{H}_{3} \mathrm{PO}_{4}$
12. Whose definition of acids and bases emphasizes the role of protons?
a. Brønsted and Lowry
c. Arrhenius
b. Lewis
d. Bohr
13. A Brønsted-Lowry acid is a(n)
a. electron-pair acceptor.
c. proton acceptor.
b. electron-pair donor.
d. proton donor.
14. In the equation $\mathrm{HCl}(g)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q)$, which species is a Brønsted-Lowry acid?
a. HCl
c. Cl^{-}
b. $\mathrm{H}_{2} \mathrm{O}$
d. None of the above
15. A Lewis base is $\mathrm{a}(\mathrm{n})$
a. producer of OH^{-}ions.
c. electron-pair donor.
b. proton acceptor.
d. electron-pair acceptor.
16. A species that remains when an acid has lost a proton is a
a. conjugate base.
c. strong base.
b. conjugate acid.
d. strong acid.
17. A species that is formed when a base gains a proton is a
a. conjugate base.
c. strong base.
b. conjugate acid.
d. strong acid.
18. How many conjugate acid-base pairs participate in a Brønsted-Lowry acid-base reaction?
a. none
c. two
b. one
d. four
19. The members of a conjugate acid-base pair
a. appear on the same side of the chemical equation.
b. appear on opposite sides of the chemical equation.
c. might appear on the same side or on opposite sides of the equation.
d. are not included in the chemical equation.
20. In the reaction represented by the equation $\mathrm{HF}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{F}^{-}$, a conjugate acid-base pair is
a. $\quad \mathrm{F}^{-}$and $\mathrm{H}_{2} \mathrm{O}$.
c. $\mathrm{H}_{3} \mathrm{O}^{+}$and HF .
b. HF and F^{-}.
d. HF and $\mathrm{H}_{2} \mathrm{O}$.
21. In the reaction represented by the equation $\mathrm{HClO}_{3}+\mathrm{NH}_{3} \rightleftarrows \mathrm{NH}_{4}^{+}+\mathrm{ClO}_{3}^{-}$the conjugate acid of NH_{3} is
a. HClO_{3}.
c. NH_{4}^{+}.
b. ClO_{3}^{-}.
d. not shown.
22. In the reaction represented by the equation $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$, the conjugate acid of $\mathrm{CH}_{3} \mathrm{COO}^{-}$is
a. $\mathrm{H}_{2} \mathrm{O}$.
c. $\quad \mathrm{H}_{3} \mathrm{O}^{+}$.
b. $\mathrm{CH}_{3} \mathrm{COOH}$.
d. not shown.
23. In the reaction represented by the equation $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$, the conjugate base of $\mathrm{H}_{3} \mathrm{O}^{+}$is
a. $\mathrm{H}_{2} \mathrm{O}$.
c. $\mathrm{CH}_{3} \mathrm{COO}^{-}$.
b. $\mathrm{CH}_{3} \mathrm{COOH}$.
d. not shown.
24. The conjugate of a strong acid is a
a. strong acid.
c. strong base.
b. weak acid.
d. weak base.
25. In the reaction represented by the equation $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, the ion $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$acts as a(n)
a. acid.
c. spectator species.
b. base.
d. salt.
26. In the reaction represented by the equation $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$, the molecule $\mathrm{H}_{2} \mathrm{O}$ acts as a(n)
a. acid.
c. spectator species.
b. base.
d. salt.
27. Which compound is produced by a neutralization?
a. $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b. $\mathrm{HNO}_{3}(a q)$
c. $\mathrm{Ca}(\mathrm{OH})_{2}(s)$
d. $\mathrm{H}_{3} \mathrm{PO}_{4}(a q)$
28. Pure water partially breaks down into charged particles in a process called
a. hydration.
c. self-ionization.
b. hydrolysis.
d. dissociation.
29. What is the concentration of OH^{-}ions in pure water?
a. $\quad 10^{-7} \mathrm{M}$
b. $\quad 0.7 \mathrm{M}$
c. $\quad 55.4 \mathrm{M}$
d. $\quad 10^{7} \mathrm{M}$
30. What is the product of $\mathrm{H}_{3} \mathrm{O}^{+}$ion and OH^{-}ion concentrations in water?
a. 10^{-28}
b. 10^{-14}
c. 10^{-7}
d. 55.4
31. Which expression represents the pH of a solution?
a. $\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
b. $-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
c. $\log \left[\mathrm{OH}^{-}\right]$
d. $-\log \left[\mathrm{OH}^{-}\right]$
32. If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a solution is greater than $\left[\mathrm{OH}^{-}\right]$, the solution
a. is always acidic.
c. is always neutral.
b. is always basic.
d. might be acidic, basic, or neutral.
33. If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a solution is less than $\left[\mathrm{OH}^{-}\right]$, the solution
a. is always acidic.
c. is always neutral.
b. is always basic.
d. might be acidic, basic, or neutral.
34. The pH of an acidic solution is
a. less than 0 .
c. greater than 7.
b. less than 7 .
d. greater than 14.
35. If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.7 \times 10^{-3} \mathrm{M}$, what is the pH of the solution?
a. 1.81
b. 2.13
c. 2.42
d. $\quad 2.77$
36. If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.26 \times 10^{-5} \mathrm{M}$, what is the pH of the solution?
a. 2.161
b. 3.912
c. 4.083
d. 8.024
37. What is the pH of a 0.027 M KOH solution?
a. $\quad 6.47$
b. 12.43
c. $\quad 12.92$
d. $\quad 14.11$
38. What is the pH of a 0.00162 M NaOH solution?
a. $\quad 3.841$
b. 5.332
c. 9.923
d. $\quad 11.210$
39. The pH of a solution is 9.0 . What is its $\mathrm{H}_{3} \mathrm{O}^{+}$concentration?
a. $1 \times 10^{-9} \mathrm{M}$
b. $1 \times 10^{-7} \mathrm{M}$
c. $1 \times 10^{-5} \mathrm{M}$
d. $\quad 9 \mathrm{M}$
40. What is the hydronium ion concentration of a solution whose pH is 7.30 ?
a. $\quad 1.4 \times 10^{-11} \mathrm{M}$
b. $\quad 3.8 \times 10^{-8} \mathrm{M}$
c. $\quad 5.0 \times 10^{-8} \mathrm{M}$
d. $\quad 7.1 \times 10^{-6} \mathrm{M}$
41. The pH of a solution is 10.00 . What is its OH^{-}concentration?
a. $\quad 1.0 \times 10^{-10} \mathrm{M}$
b. $\quad 1.0 \times 10^{-7} \mathrm{M}$
c. $\quad 1.0 \times 10^{-4} \mathrm{M}$
d. $\quad 10 \mathrm{M}$
42. What process measures the amount of a solution of known concentration required to react with a measured amount of a solution of unknown concentration?
a. autoprotolysis
c. neutralization
b. hydrolysis
d. titration
43. An acid-base titration is carried out by monitoring
a. temperature.
c. pressure.
b. pH .
d. density.
44. In an acid-base titration, equivalent quantities of hydronium ions and hydroxide ions are present
a. at the beginning point.
c. at the end point.
b. at the midpoint.
d. throughout the titration.
45. A standard solution always contains
a. a known concentration of solute.
c. a base.
b. an acid.
d. a primary standard.
46. When titrating a strong acid with a strong base, the equivalence point
a. will be below a pH of 7.0.
c. will be at a pH of 7.0.
b. will be above a pH of 7.0.
d. will be either above or below a pH of 7.0.
47. When titrating a weak acid with a strong base, the equivalence point
a. will be below a pH of 7.0.
c. will be at a pH of 7.0.
b. will be above a pH of 7.0.
d. cannot be determined by pH .
48. What is the molarity of an HCl solution if 50.0 mL is neutralized in a titration by 40.0 mL of 0.400 M NaOH ?
a. $\quad 0.200 \mathrm{M}$
b. $\quad 0.280 \mathrm{M}$
c. $\quad 0.320 \mathrm{M}$
d. $\quad 0.500 \mathrm{M}$
49. What is the molarity of an HCl solution if 125 mL is neutralized in a titration by 76.0 mL of 1.22 M KOH ?
a. $\quad 0.371 \mathrm{M}$
b. $\quad 0.455 \mathrm{M}$
c. $\quad 0.617 \mathrm{M}$
d. $\quad 0.742 \mathrm{M}$
50. What is the molarity of an NaOH solution if 4.37 mL is titrated by 11.1 mL of $0.0904 \mathrm{M} \mathrm{HNO}_{3}$?
a. $\quad 0.230 \mathrm{M}$
b. $\quad 0.355 \mathrm{M}$
c. $\quad 0.460 \mathrm{M}$
d. $\quad 0.620 \mathrm{M}$
51. Calculate the molarity of a $\mathrm{Ba}(\mathrm{OH})_{2}$ solution if 1900 mL is completely titrated by 261 mL of $0.505 \mathrm{M} \mathrm{HNO}_{3}$.
a. $\quad 0.0173 \mathrm{M}$
b. $\quad 0.0254 \mathrm{M}$
c. $\quad 0.0322 \mathrm{M}$
d. $\quad 0.0347 \mathrm{M}$
52. What is the acid-ionization expression for the ionization of acetic acid, shown in the reaction represented by the equation $\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COOH}^{-}(a q)$?
a. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COOH}^{-}\right]$
b. $\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
c. $\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$
d. $\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}$
53. To what degree does water ionize?
a. completely
c. slightly
b. to a large extent
d. not at all
54. What is the symbol for the ion-product constant for water?
a. K_{w}
b. K_{a}
c. K
d. $K_{s p}$
55. When small amounts of acids or bases are added to a solution of a weak acid and its salt, the pH
a. always increases considerably.
b. always decreases considerably.
c. either increases or decreases considerably.
d. remains nearly constant.
56. If a base is added to a solution of a weak acid and its salt,
a. more of the nonionized weak acid forms.
b. more of the nonionized acid ionizes.
c. precipitation occurs.
d. the hydronium ion concentration decreases.
57. If a base is added to a solution of a weak base and its salt,
a. the hydronium ion concentration increases.
b. more of the weak base ionizes.
c. more hydroxide ions form.
d. more water and nonionized base forms.
58. If an acid is added to a solution of a weak base and its salt,
a. more water forms and more weak base ionizes.
b. the hydronium ion concentration decreases.
c. more hydroxide ions form.
d. more nonionized weak base forms.
59. Which solutions resist changes in pH ?
a. buffered
c. neutral
b. equilibrium
d. stable
60. An example of a good buffer is
a. HCl and NaCl .
b. HNO_{3} and NaCl .
c. HNO_{2} and NaNO_{2}
d. $\mathrm{CH}_{3} \mathrm{COOH}$ and NaC .
61. What type of reaction occurs in an aqueous solution of the salt of a weak acid and a strong base?
a. cation hydrolysis
c. both cation and anion hydrolysis
b. anion hydrolysis
d. buffer hydrolysis
62. The cation of the salt of a strong acid and a weak base is the
a. hydronium ion.
c. conjugate acid of the weak base.
b. hydroxide ion.
d. conjugate base of the strong acid.
63. Basic solutions are generally formed by hydrolysis of anions of salts of
a. weak acids and weak bases.
c. strong acids and weak bases.
b. weak acids and strong bases.
d. strong acids and strong bases.
64. Acidic solutions are generally formed by hydrolysis of cations of salts of
a. weak acids and weak bases.
c. strong acids and weak bases.
b. weak acids and strong bases.
d. strong acids and strong bases.

Problem

65. What is the pH of a solution that has a hydronium ion concentration of $8.26 \times 10^{-5} \mathrm{M}$?
66. What is the pH of a 0.0670 M KOH solution?
67. What is the hydroxide ion concentration of a solution that has a pH of 8.570 ?
68. What is the hydronium ion concentration of a solution that has a pOH of 4.120 ?

Honors Chemistry Practice Test 14, 15, 18.3
Answer Section

MULTIPLE CHOICE

1. ANS: B OBJ: 1
2. ANS: B OBJ: 1
3. ANS: D OBJ: 1
4. ANS: A OBJ: 1
5. ANS: B OBJ: 4
6. ANS: A OBJ: 4
7. ANS: C OBJ: 4
8. ANS: B OBJ: 5
9. ANS: A OBJ: 5
10. ANS: A OBJ: 5
11. ANS: D OBJ: 5
12. ANS: A OBJ: 1
13. ANS: D OBJ: 1
14. ANS: A OBJ: 1
15. ANS: C OBJ: 2
16. ANS: A OBJ: 1
17. ANS: B OBJ: 1
18. ANS: C OBJ: 1
19. ANS: B OBJ: 1
20. ANS: B OBJ: 1
21. ANS: C OBJ: 1

PTS: 1
DIF: I
DIF: II
DIF: I
DIF: II

DIF: II

DIF: I
DIF: I
DIF: II
DIF: I
DIF: I
DIF: I
DIF: I
DIF: I
DIF: II
DIF: II

REF: 1
REF: 1

REF: 1

REF: 1
REF: 1
REF: 1

REF: 1

REF: 1
REF: 1
REF: 1
REF: 1
REF: 2
REF: 2
REF: 2
REF: 2
REF: 3
REF: 3

REF: 3
REF: 3
REF: 3
REF: 3
22. ANS: B OBJ: 1
23. ANS: A OBJ: 1
24. ANS: D OBJ: 1
25. ANS: B OBJ: 1
26. ANS: B

OBJ: 1
27. ANS: A

OBJ: 2
28. ANS: C OBJ: 1
29. ANS: A OBJ: 1
30. ANS: B OBJ: 1
31. ANS: B OBJ: 2
32. ANS: A OBJ: 2
33. ANS: B

OBJ: 2
34. ANS: B OBJ: 3
35. ANS: D

Solution:
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log 1.7 \times 10^{-3}=2.77$
PTS: 1
DIF: III
REF: 1
OBJ: 4
36. ANS: C

Solution:
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log 8.26 \times 10^{-5}=4.083$
PTS: 1
DIF: III
REF: 1
OBJ: 4
37. ANS: B

Solution:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.00 \times 10^{-14}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.00 \times 10^{-14}}{\left[2.7 \times 10^{-2}\right]}=3.707 \times 10^{-13} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log 3.707 \times 10^{-13}=12.43$
PTS: 1
DIF: III
REF: 1
OBJ: 4
38. ANS: D

Solution:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.00 \times 10^{-14}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.00 \times 10^{-14}}{\left[1.62 \times 10^{-3}\right]}=6.173 \times 10^{-12} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log 6.173 \times 10^{-12}=11.210$
PTS: 1
DIF: III
REF: 1
OBJ: 4
39. ANS: A

Solution:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{ph}}=10^{-9.0}=1 \times 10^{-9} \mathrm{M}$
PTS: 1
DIF: II
REF: 1
OBJ: 5
40. ANS: C

Solution:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{ph}}=10^{-7.30}=5.012 \times 10^{-8}$ or $5.0 \times 10^{-8} \mathrm{M}$
PTS: 1
DIF: III
REF: 1
OBJ: 5
41. ANS: C

Solution:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-p h}=10^{-10.00}=1.0 \times 10^{-10} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=\frac{1.00 \times 10^{-14}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{1.00 \times 10^{-14}}{\left[1.0 \times 10^{-10}\right]}=1.0 \times 10^{-4} \mathrm{M}$

PTS: 1
42. ANS: D OBJ: 2
43. ANS: B OBJ: 2
44. ANS: C OBJ: 2
45. ANS: A OBJ: 2
46. ANS: C OBJ: 2
47. ANS: B

OBJ: 2

DIF: III
REF: 1
DIF: I
DIF: I
DIF: I

DIF: I
DIF: II
DIF: II
PTS: 1

OBJ: 5
REF: 2
REF: 2
REF: 2

REF: 2

REF: 2
REF: 2
48. ANS: C

Solution:
$M_{\mathrm{OH}^{-}} V_{\mathrm{OH}^{-}}=M_{\mathrm{H}_{3} \mathrm{O}^{+}} V_{\mathrm{H}_{3} \mathrm{O}^{+}}$
$M_{\mathrm{H}_{3} \mathrm{O}^{+}}=\frac{M_{\mathrm{OH}^{-}} V_{\mathrm{OH}^{-}}}{V_{\mathrm{H}_{3} \mathrm{O}^{+}}}=\frac{(0.400 \mathrm{M})(40.0 \mathrm{~mL})}{50.0 \mathrm{~mL}}=0.320 \mathrm{M} \mathrm{HCl}$

PTS: 1
DIF: III
REF: 2
OBJ: 3
49. ANS: D

Solution:
$M_{\mathrm{OH}^{-}} V_{\mathrm{OH}^{-}}=M_{\mathrm{H}_{3} \mathrm{O}^{+}} V_{\mathrm{H}_{3} \mathrm{O}^{+}}$
$M_{\mathrm{H}_{3} \mathrm{O}^{+}}=\frac{M_{\mathrm{OH}^{-}} V_{\mathrm{OH}^{-}}}{V_{\mathrm{H}_{3} \mathrm{O}^{+}}}=\frac{(1.22 \mathrm{M})(76.0 \mathrm{~mL})}{125 \mathrm{~mL}}=0.742 \mathrm{M} \mathrm{HCl}$

PTS: 1
DIF: III
REF: 2
OBJ: 3
50. ANS: A

Solution:
$M_{\mathrm{OH}^{-}} V_{\mathrm{OH}^{-}}=M_{\mathrm{H}_{3} \mathrm{O}^{+}} V_{\mathrm{H}_{3} \mathrm{O}^{+}}$
$M_{O H^{-}}=\frac{M_{H_{3} \mathrm{O}^{+}} V_{H_{3} \mathrm{O}^{+}}}{V_{\mathrm{OH}^{-}}}=\frac{(0.0904 \mathrm{M})(11.1 \mathrm{~mL})}{4.37 \mathrm{~mL}}=0.230 \mathrm{M} \mathrm{NaOH}$

PTS: 1
DIF: III
REF: 2
OBJ: 3
51. ANS: D

Solution:
$M_{\mathrm{OH}^{-}} V_{\mathrm{OH}^{-}}=M_{\mathrm{H}_{3} \mathrm{O}^{+}} V_{\mathrm{H}_{3} \mathrm{O}^{+}}$
$M_{O H^{-}}=\frac{M_{H_{3} O^{+}} V_{H_{3} O^{+}}}{V_{O H^{-}}}=\frac{(0.505 \mathrm{M})(261 \mathrm{~mL})}{1900 \mathrm{~mL}}=0.06937 \mathrm{M}$
$M \mathrm{Ba}(\mathrm{OH})_{2}=\frac{1}{2}\left(M_{\mathrm{OH}^{-}}\right)=\frac{1}{2} \times 0.06937 \mathrm{M}=0.0347 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$

PTS: 1
52. ANS: C

OBJ: 1
53. ANS: C OBJ: 2
54. ANS: A OBJ: 2
55. ANS: D

OBJ: 3
56. ANS: B OBJ: 3
57. ANS: D OBJ: 3

DIF: III
PTS: 1

PTS: 1
DIF: I

DIF: I

DIF: I

DIF: I

DIF: I

REF: 3
OBJ: 3
REF: 3

REF: 3

REF: 3
REF: 3

REF: 3
58. ANS: A OBJ: 3
59. ANS: A OBJ: 3
60. ANS: C OBJ: 3
61. ANS: B OBJ: 4
62. ANS: C OBJ: 4
63. ANS: B OBJ: 4
64. ANS: C OBJ: 4

PTS: 1
DIF: I
PTS: 1
DIF: I
DIF: II
DIF: I
DIF: I
DIF: I
DIF: I
PTS: 1

REF: 3
REF: 3
REF: 3

REF: 3
REF: 3
REF: 3
REF: 3

PROBLEM

65. ANS:
4.083

Solution:
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(8.26 \times 10^{-5}\right)=4.083$
PTS: 1
DIF: II
REF: 1
OBJ: 4
66. ANS:
12.826

Solution:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{K_{w}}{\left[\mathrm{OH}^{-}\right]}=\frac{1.00 \times 10^{-14}}{6.70 \times 10^{-2}}=1.49 \times 10^{-13} \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.49 \times 10^{-13}\right)=12.826$
PTS: 1
DIF: III
REF: 1
OBJ: 4
67. ANS:
$3.72 \times 10^{-6} \mathrm{M}$
Solution:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}=10^{-8.57}=2.69 \times 10^{-9} \mathrm{M}$
$\left[\mathrm{OH}^{-}\right]=\frac{K_{w}}{\mathrm{H}_{3} \mathrm{O}^{+}}=\frac{1.00 \times 10^{-14}}{2.69 \times 10^{-9}}=3.72 \times 10^{-6} \mathrm{M}$

PTS: 1
DIF: III
REF: 1
OBJ: 5
68. ANS:
$1.32 \times 10^{-10} \mathrm{M}$
Solution:
$\left[\mathrm{OH}^{-}\right]=14-\mathrm{pOH}=14-4.12=9.88$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{ph}}=10^{-9.88}=1.32 \times 10^{-10} \mathrm{M}$
PTS: 1
DIF: III
REF: 1
OBJ: 5
$\begin{array}{llll}\mathrm{D} & 11 . \quad \text { A } 23 . \quad \text { D } 35 . & \text { C } 48 .\end{array}$

A 12.
B 1 .
D 13.
D 24.

B 25.

D 3.
B 26.
C 15.
A 4.

$$
\begin{aligned}
& \mathrm{A} \quad 16 . \quad-\mathrm{A} \quad 27 . .20 .
\end{aligned}
$$

B

B $17 . \quad$ C 28.

$$
\mathrm{D} 42 .
$$

A 54.
$\begin{array}{ll}\mathrm{B} \quad 37 . & \mathrm{A} \quad 50 .\end{array}$
B 2.
A 14.

> | D | 38. |
| :--- | :--- |

$$
\begin{array}{ll}
\mathrm{C} & 36 . \quad \mathrm{D}
\end{array} 49 .
$$

$$
\text { A } 39 .
$$

$$
\mathrm{C} \quad 52 .
$$

$$
\text { C } 40
$$

C 41.

$$
\text { C } 53 .
$$

8. $\quad \mathrm{A} \quad 29$.

B	19.

$\underset{\sim}{A} 6$

$$
\text { C } 18
$$

$$
\text { B } 30 .
$$

$$
\text { B } 31 .
$$

$$
\text { B } 43 .
$$

$$
\text { D } 55 .
$$

$$
\text { B } 20 .
$$

$$
8 .
$$

$$
\text { C } 21 .
$$

A 9.
B 33.

$$
\text { A } 32 .
$$

$$
\text { A } 45 .
$$

B 56 56.

[^0]$$
\text { C } 46 .
$$
$$
\underline{\mathrm{D}} 57
$$
\qquad
\qquad C 60. B 61.

C 62.

B 63.

C 64.

[^0]: B 34.

